X-Message-Number: 0019.2 Subject: The Technical Feasibility of Cryonics; Part #2 Newsgroups: sci.cryonics From: (Ralph Merkle) Subject: The Technical Feasibility of Cryonics; Part #2 Date: 22 Nov 92 21:14:47 GMT The Technical Feasibility of Cryonics PART 2 of 5. by Ralph C. Merkle Xerox PARC 3333 Coyote Hill Road Palo Alto, CA 94304 A shorter version of this article appeared in: Medical Hypotheses (1992) 39, pages 6-16. ---------------------------------------------------------- CRITERIA OF DEATH "death \'deth\ n [ME deeth, fr. OE death; akin to ON dauthi death, deyja to die - more at DIE] 1: a permanent cessation of all vital functions : the end of life" Webster's New Collegiate Dictionary Determining when "permanent cessation of all vital functions" has occurred is not easy. Historically, premature declarations of death and subsequent burial alive have been a major problem. In the seventh century, Celsus wrote "... Democritus, a man of well merited celebrity, has asserted that there are in reality, no characteristics of death sufficently certain for physicians to rely upon."[87, page 166]. Montgomery, reporting on the evacuation of the Fort Randall Cemetery, states that nearly two percent of those exhumed were buried alive[87]. "Many people in the nineteenth century, alarmed by the prevalence of premature burial, requested, as part of the last offices, that wounds or mutilations be made to assure that they would not awaken ... embalming received a considerable impetus from the fear of premature burial."[87]. New Criteria Current criteria of "death" are sufficient to insure that spontaneous recovery in the mortuary or later is a rare occurence. When examined closely, however, such criteria are simply a codified summary of symptoms that have proven resistant to treatment by available techniques. Historically, they derive from the fear that the patient will spontaneously recover in the morgue or crypt. There is no underlying theoretical structure to support them, only a continued accumulation of ad hoc procedures supported by empirical evidence. Each new medical advance forces a reexamination and possible change of the existing ad hoc criteria. The criteria used by the clinician today to determine "death" are dramatically different from the criteria used 100 years ago, and have changed more subtly but no less surely in the last decade[ft. 7]. It seems almost inevitable that the criteria used 200 years from now will differ dramatically from the criteria commonly employed today. These ever shifting criteria for "death" raise an obvious question: is there a definition which will not change with advances in technology? A definition which does have a theoretical underpinning and is not dependent on the technology of the day? The answer arises from the confluence and synthesis of many lines of work, ranging from information theory, neuroscience, physics, biochemistry and computer science to the philosophy of the mind and the evolving criteria historically used to define death. When someone has suffered a loss of memory or mental function, we often say they "aren't themselves." As the loss becomes more serious and all higher mental functions are lost, we begin to use terms like "persistent vegetative state." While we will often refrain from declaring such an individual "dead," this hesitation does not usually arise because we view their present state as "alive" but because there is still hope of recovery to a healthy state with memory and personality intact. From a physical point of view we believe there is a chance that their memories and personalities are still present within the physical structure of the brain, even though their behavior does not provide direct evidence for this. If we could reliably determine that the physical structures encoding memory and personality had in fact been destroyed, then we we would abandon hope and declare the person dead. The Information Theoretic Criterion of Death Clearly, if we knew the coordinates of each and every atom in a person's brain then we would (at least in principle) be in a position to determine with absolute finality whether their memories and personality had been destroyed in the information theoretic sense, or whether their memories and personality were preserved but could not, for some reason, be expressed. If such final destruction had taken place, then there would be little reason for hope. If such destruction had not taken place, then it would in principle be possible for a sufficiently advanced technology to restore the person to a fully functional and healthy state with their memories and personality intact. Considerations like this lead to the information theoretic criterion of death[ft. 8]. A person is dead according to the information theoretic criterion if their memories, personality, hopes, dreams, etc. have been destroyed in the information theoretic sense. That is, if the structures in the brain that encode memory and personality have been so disrupted that it is no longer possible in principle to restore them to an appropriate functional state then the person is dead. If the structures that encode memory and personality are sufficiently intact that inference of the memory and personality are feasible in principle, and therefore restoration to an appropriate functional state is likewise feasible in principle, then the person is not dead. A simple example from computer science is in order. If a computer is fully functional, then its memory and "personality" are completely intact. If we took an axe to the CPU, then the computer would no longer be functional. However, its memory and "personality" would still be present on disk, and once we repaired the CPU we could fully restore the computer[ft. 9]. In a similar fashion, as long as the structures that encode the memory and personality of a human being have not been irretrievably "erased" (to use computer jargon) then restoration to a fully functional state with memory and personality intact is in principle feasible. Any technology independent definition of "death" should conclude that such a person is not dead, for a sufficiently advanced technology could restore the person to a healthy state. On the flip side of the coin, if the structures encoding memory and personality have suffered sufficient damage to obliterate them beyond recognition, then death by the information theoretic criterion has occurred. An effective method of insuring such destruction is to burn the structure and stir the ashes. This is commonly employed to insure the destruction of classified documents. Under the name of "cremation" it is also employed on human beings and is sufficient to insure that death by the information theoretic criterion takes place. More Exotic Approaches It is not obvious that the preservation of life requires the physical repair or even the preservation of the brain[11,12]. Although the brain is made of neurons, synapses, protoplasm, DNA and the like; most modern philosophers of consciousness view these details as no more significant than hair color or clothing style. Three samples follow. The ethicist and prolific author Robert Veatch said, in "Death, Dying, and the Biological Revolution", "An 'artificial brain' is not possible at present, but a walking, talking, thinking individual who had one would certainly be considered living."[15, page 23]. The noted philosopher of consciousness Paul Churchland said, in "Matter and Consciousness," "If machines do come to simulate all of our internal cognitive activities, to the last computational detail, to deny them the status of genuine persons would be nothing but a new form of racism."[12, page 120]. Hans Moravec, renowned roboticist and Director of the Mobile Robot Lab at Carnegie Mellon said, "Body-identity assumes that a person is defined by the stuff of which a human body is made. Only by maintaining continuity of body stuff can we preserve an individual person. Pattern-identity, conversely, defines the essence of a person, say myself, as the pattern and the process going on in my head and body, not the machinery supporting that process. If the process is preserved, I am preserved. The rest is mere jelly."[50, page 117]. We'll Use the Conservative Approach Restoration of the existing structure will be more difficult than building an artifical brain (particularly if the restoration is down to the molecular level). Despite this, we will examine the technically more exacting problem of restoration because it is more generally acceptable. Most people accept the idea that restoring the brain to a healthy state in a healthy body is a desirable objective. A range of increasingly less restrictive objectives (as described) are possible. To the extent that more relaxed criteria are acceptable, the technical problems are much less demanding. By deliberately adopting such a conservative position, we lay ourselves open to the valid criticism that the methods described here will not prove necessary. Simpler techniques that relax to some degree the philosophical constraints we have imposed might well be adopted in practice. In this paper we will eschew the more exotic possibilities (without, however, adopting any position on their desirability). Another issue is not so much philosophical as emotional. Major surgery is not a pretty sight. There are few people who can watch a surgeon cut through living tissue with equanimity. In a heart transplant, for example, surgeons cut open the chest of a dying patient to rip out their dying heart, cut open a fresh cadaver to seize its still-beating heart, and then stitch the cadaver's heart into the dying patients chest. Despite this (which would have been condemned in the middle ages as the blackest of black magic), we cheer the patient's return to health and are thankful that we live in an era when medicine can save lives that were formerly lost. The mechanics of examining and repairing the human brain, possibly down to the level of individual molecules, might not be the best topic for after dinner conversation. While the details will vary depending on the specific method used, this could also be described by lurid language that failed to capture the central issue: the restoration to full health of a human being. A final issue that should be addressed is that of changes introduced by the process of restoration itself. The exact nature and extent of these changes will vary with the specific method. Current surgical techniques, for example, result in substantial tissue changes. Scarring, permanent implants, prosthetics, etc. are among the more benign outcomes. In general, methods based on a sophisticated ability to rearrange atomic structure should result in minimal undesired alterations to the tissue. "Minimal changes" does not mean "no changes." A modest amount of change in molecular structure, whatever technique is used, is both unavoidable and insignificant. The molecular structure of the human brain is in a constant state of change during life - molecules are synthesized, utilized, and catabolized in a continuous cycle. Cells continuously undergo slight changes in morphology. Cells also make small errors in building their own parts. For example, ribosomes make errors when they build proteins. About one amino acid in every 10,000 added to a growing polypeptide chain by a ribosome is incorrect[14, page 383]. Changes and errors of a similar magnitude introduced by the process of restoration can reasonably be neglected. Does the Information Theoretic Criterion Matter? It is normally a matter of small concern whether a physician of 2190 would or would not concur with the diagnosis of "death" by a contemporary physician applied to a specific patient in 1990. A physician of today who found himself in 1790 would be able to do little for a patient whose heart had stopped, even though he knew intellectually that an intensive care unit would likely be able to save the patients life. Intensive care units were simply not available in 1790, no matter what the physician knew was possible. So, too, with the physician of today when informed that a physician 200 years hence could save the life of the patient that he has just pronounced "dead." There is nothing he can do, for he can only apply the technologies of today - except in the case of cryonic suspension. In this one instance, we must ask not whether the person is dead by today's (clearly technology dependent) criteria, but whether the person is dead by all future criteria. In short, we must ask whether death by the information theoretic criterion has taken place. If it has not, then cryonic suspension is a reasonable (and indeed life saving) course of action. Experimental Proof or Disproof of Cryonics It is often said that "cryonics is freezing the dead." It is more accurate to say that "cryonics is freezing the terminally ill. Whether or not they are dead remains to be seen." The scientifically correct experiment to verify that cryonics works (or demonstrate that it does not work) is quite easy to describe: 1.) Select N experimental subjects. 2.) Freeze them. 3.) Wait 200 years. 4.) See if the technology available 200 years from now can (or cannot) cure them. The drawback of this experimental protocol is obvious: we can't get the results for 200 years. This problem is fundamental. The use of future technology is an inherent part of cryonics. This kind of problem is not unique to cryonics. A new AIDS treatment might undergo clinical trials lasting a few years. The ethical dilemma posed by the terminally ill AIDS patient who might be assisted by the experimental treatment is well known. If the AIDS patient is given the treatement prior to completion of the clinical trials, it is possible that his situation could be made signficantly worse. On the other hand, to deny a potentially life saving treatment to someone who will soon die anyway is ethically untenable. In the case of cryonics this is not an interrim dilemma pending the (near term) outcome of clinical trials. It is a dilemma inherent in the nature of the proposal. Clinical trials, the bulwark of modern medical practice, are useless in resolving the effectiveness of cryonics in a timely fashion. Further, cryonics (virtually by definition) is a procedure used only when the patient has exhausted all other available options. In current practice the patient is suspended after legal death: the fear that the treatment might prove worse than the disease is absent. Of course, suspension of the terminally ill patient somewhat before legal death has significant advantages. For example, a patient suffering from a brain tumour might view suspension following the obliteration of his brain as significantly less desirable than suspension prior to such obliteration, even if the suspension occurred at a point in time when the patient was legally "alive." In such a case, it is inappropriate to disregard or override the patient's own wishes. To quote the American College of Physicians Ethics Manual, "Each patient is a free agent entitled to full explanation and full decision-making authority with regard to his medical care. John Stuart Mill expressed it as: 'Over himself, his own body and mind, the individual is sovereign.' The legal counterpart of patient autonomy is self-determination. Both principles deny legitimacy to paternalism by stating unequivocally that, in the last analysis, the patient determines what is right for him." "If the [terminally ill] patient is a mentally competent adult, he has the legal right to accept or refuse any form of treatment, and his wishes must be recognized and honored by his physician."[92] If clinical trials cannot provide us with an answer, are there any other methods of evaluating the proposal? Can we do more than say that (a) cryonic suspension can do no harm (in keeping with the Hippocratic oath), and (b) it has some difficult-to-define chance of doing good? Failure Criteria Trying to prove something false is often the simplest method of clarifying exactly what is required to make it true. A consideration of the information theoretic criterion of death makes it clear that, from a technical point of view (ignoring various non-technical issues) there are two and only two ways in which cryonics can fail[ft. 10]. Cryonics will fail if: (1) Information theoretic death occurs prior to reaching liquid nitrogen temperature[ft. 11]. (2) Repair technology that is feasible in principle is never developed and applied in practice, even after the passage of centuries. The first failure criterion can only be considered against the background of current understanding of freezing damage, ischemic injury and mechanisms of memory and synaptic plasticity. Whether or not memory and personality are destroyed in the information theoretic sense by freezing and the ischemic injury that might precede it can only be answered by considering both the physical nature of memory and the nature of the damage to which the brain is subjected before reaching the stability provided by storage in liquid nitrogen. The following sections will therefore provide brief reviews of these subjects. The second failure criterion is considered in the later sections on technical issues, which discuss in more detail how future technologies might be applied to the repair of frozen tissue. As the reader will readily appreciate, the following reviews will consider only the most salient points that are of the greatest importance in determining overall feasibility. They are necessarily too short to consider the topics in anything like full detail, but should provide sufficient information to give the reader an overview of the relevant issues. References to further reading are provided throughout[ft. 12]. FREEZING DAMAGE There is an extensive literature on the damage caused by both cooling and freezing to liquid nitrogen temperatures. Some reviews are[5, 6, 68, 70]. Scientific American had a recent and quite accessible article[57]. In this section, we briefly review the nature of such damage and consider whether it is likely to cause information theoretic death. Damage, per se, is not meaningful except to the extent that it obscures or obliterates the nature of the original structure. While cooling tissue to around 0 degrees C creates a number of problems, the ability to cool mammals to this temperature or even slightly below (with no ice formation) using current methods followed by subsequent complete recovery[61, 62] shows that this problem can be controlled and is unlikely to cause information theoretic death. We will, therefore, ignore the problems caused by such cooling. This problem is discussed in [5] and elsewhere. Further, some "freezing" damage in fact occurs upon re-warming. Current work supports this idea because the precise method used to re-warm tissue can strongly affect the success or failure of present experiments even when freezing conditions are identical[5, 6]. If we presume that future repair methods avoid the step of re-warming the tissue prior to analysis and instead analyze the tissue directly in the frozen state then this source of damage will be eliminated. Several current methods can be used to distinguish between damage that occurs during freezing and damage that occurs while thawing. At present, it seems likely that some damage occurs during each process. While significant damage does occur during slow freezing, it does not induce structural changes which obliterate the cell. Present Day Successes Many types of tissue including human embryos, sperm, skin, bone, red and white blood cells, bone marrow, and others [5, 6, 59] have been frozen in liquid nitrogen, thawed, and have recovered. This is not true of whole mammals[ft. 13]. The brain seems more resistant than most organs to freezing damage[58, 79]. Recovery of overall brain function following freezing to liquid nitrogen temperature has not been demonstrated, although recovery of unit level electrical activity following freezing to -60 degrees C has been demonstrated[79]. Fractures Perhaps the most dramatic injury caused by freezing is macroscopic fractures[56]. Tissue becomes extremely brittle at or below the "glass transition temperature" at about 140K. Continued cooling to 77K (the temperature of liquid nitrogen) creates tensile stress in the glassy material. This is exacerbated by the skull, which inhibits shrinkage of the cranial contents. This stress causes readily evident macroscopic fractures in the tissue. Fractures that occur below the glass transition temperature result in very little information loss. While dramatic, this damage is unlikely to cause or contribute to information theoretic death. Ice The damage most commonly associated with freezing is that caused by ice. Contrary to common belief, freezing does not cause cells to burst open like water pipes on a cold winter's day. Quite the contrary, ice formation takes place outside the cells in the extracellular region. This is largely due to the presence of extracellular nucleating agents on which ice can form, and the comparative absence of intracellular nucleating agents. Consequently the intracellular liquid supercools. Extracellular ice formation causes an increase in the concentration of the extra-cellular solute, e.g., the chemicals in the extracellular liquid are increased in concentration by the decrease in available water. The immediate effect of this increased extracellular concentration is to draw water out of the cells by osmosis. Thus, freezing dehydrates cells. Damage can be caused by the extracellular ice, by the increased concentration of solute, or by the reduced temperature itself. All three mechanisms can play a role under appropriate conditions. The damage caused by extracellular ice formation depends largely on the fraction of the initial liquid volume that is converted to ice[6, 57]. (The initial liquid volume might include a significant amount of cryoprotectant as well as water). When the fraction of the liquid volume converted to ice is small, damage is often reversible even by current techniques. In many cases, conversion of significantly more than 40% of the liquid volume to ice is damaging[70, page 134; 71]. The brain is more resistant to such injury: conversion of up to 60% of the liquid volume in the brain to ice is associated with recovery of neuronal function[58, 62, 66, 82]. Storey and Storey said "If the cell volume falls below a critical minimum, then the bilayer of phospholipids in the membrane becomes so greatly compressed that its structure breaks down. Membrane transport functions cannot be maintained, and breaks in the membrane spill cell contents and provide a gate for ice to propagate into the cell. Most freeze-tolerant animals reach the critical minimum cell volume when about 65 percent of total body water is sequestered as ice."[57]. Appropriate treatment with cryoprotectants (in particular glycerol) prior to freezing will keep more than 40% of the liquid volume from being converted to ice even at liquid nitrogen temperatures. Fahy has said "All of the postulated problems in cryobiology - cell packing [omitted reference], channel size constraints [omitted reference], optimal cooling rate differences for mixed cell populations [omitted reference], osmotically mediated injury[omitted references], and the rest - can be solved in principle by the selection of a sufficiently high concentration of cryoprotectant prior to freezing. In the extreme case, all ice formation could be suppressed completely by using a concentration of agent sufficient to ensure vitrification of the biological system in question [omitted reference]"[73]. Unfortunately, a concentration of cryoprotectant sufficiently high to protect the system from all freezing injury would itself be injurious[73]. It should be possible to trade the mechanical injury caused by ice formation for the biochemical injury caused by the cryoprotectant, which is probably advantageous. In some suspensions done by Alcor both venous and arterial glycerol concentrations have exceeded 6 molar. If this concentration of cryoprotectant is also reaching the tissues, it should keep over 60% of the initial liquid volume from being converted to ice at liquid nitrogen temperatures. Concentration Effects "Dehydration and concentration of solutes past some critical level may disrupt metabolism and denature cell proteins and macromolecular complexes"[70, page 125]. The functional losses caused by this mechanism seem unlikley to result in significant information loss. One qualification to this conclusion is that cell membranes appear to be weakened by increased solute concentration[5, page 92]. To the extent that structural elements are weakened by increased solute concentrations the vulnerability of the cell to structural damage is increased. Denaturing Finally, denaturing of proteins might occur at low temperature. In this process the tertiary and perhaps even secondary structure of the protein might be disrupted leading to significant loss of protein function. However, the primary structure of the protein (the linear sequence of amino acids) is still intact and so inference of the correct functional state of the protein is in principle trivial. Further, the extent of protein denaturation caused by freezing must necessarily be limited given the relatively wide range of tissues that have been successfully frozen and thawed. Intracellular Freezing Intracellular freezing is another damaging event which might occur[6]. If cooling is slow enough to allow the removal of most of the water from the cell's interior by osmosis, then the high concentration of solute will prevent the small amount of remaining water from freezing. If cooling is too rapid, there will be insufficient time for the water within the cell to escape before it freezes. In the latter case, the intracellular contents are supercooled and freezing is abrupt (the cell "flashes"). While this correlates with a failure to recover function[5, 6, 68, 70] it is difficult to believe that flash freezing results in significant loss of information. Intracellular freezing is largely irrelevant to cryonic suspensions because of the slow freezing rates dictated by the large mass of tissue being frozen. Such freezing rates are too slow for intracellular freezing to occur except when membrane rupture allows extracellular ice to penetrate the intracellular region. If the membrane does fail, one would expect the interior of the cell to "flash." Loss of Information versus Loss of Function Spontaneous recovery of function following freezing to liquid nitrogen temperatures using the best currently available techniques appears unlikely for mammalian organs, including the brain. Despite this, the level of structural preservation can be excellent. The complexity of the systems that have been successfully frozen and rewarmed is remarkable, and supports the claim that good structural preservation is often achieved. While spontaneous recovery of function by the human brain cannot be viewed as likely, the mechanisms of damage that have been postulated in the literature are sufficiently subtle that information loss is likely to be small; that is, death by the information theoretic criterion is unlikely to have occurred. ISCHEMIC INJURY AND PRE-SUSPENSION INJURY Today, cryonic suspensions cannot be initiated until after legal death. Even operating under this constraint, it is often possible to initiate suspensions within two or three minutes following cessation of heartbeat. Future suspensions might eliminate delay entirely[ft. 14]. However, delay is sometimes unavoidable[ft. 15]. The most significant type of damage that such delay causes is ischemic injury. It should be emphasized that delay in initiating cryonic suspension is caused by the current social and legal context. From a technical point of view it is usually relatively easy to initiate suspension without delay and without ischemia. It is therefore incorrect for two reasons to argue that cryonic suspension must fail because it is initiated following legal death. First, legal death and information theoretic death are logically distinct: information theoretic death will often occur well after legal death. Second, a change in legal climate would permit suspensions to begin prior to legal death. This would completely eliminate ischemia as a cause for concern in the feasibility of cryonics. Broadly speaking, the structure of the human brain remains intact for several hours or more following the cessation of blood flow, or ischemia. The tissue changes that occur subsequent to ischemia have been well studied. There have also been studies of the "postmortem" changes that occur in tissue. Perhaps the most interesting of these studies was conducted by Kalimo et. al.[65]. "Postmortem" Changes in the Human Brain In order to study immediate "postmortem" changes, Kalimo et. al. perfused the brains of 5 patients with aldeyhydes within half an hour of "clinical death". Subsequent examination of the preserved brain tissue with both light and electron microscopy showed the level of structural preservation. In two cases, the changes described were consistent with approximately one to two hours of ischemic injury. (Ischemic injury often begins prior to declaration of "clinical death", hence the apparently longer ischemic period compared with the interval following declaration of death and prior to perfusion of fixative). Physical preservation of cellular structure and ultrastructure was excellent. It is difficult to avoid the conclusion that information loss was negligible in these cases. In two other cases, elevated intraparenchymal pressure prevented perfusion with the preservative, thus preventing examination of the tissue. Without such an examination, it is difficult to draw conclusions about the extent of information loss. In the final case, "...the most obvious abnormality was the replacement of approximately four-fifths of the parenchyma of the brain by a fluid-containing cavity that was lined by what seemed to be very thin remnants of the cerebral cortex." Cryonic suspension in this last case would not be productive. As an aside, the vascular perfusion of chemical fixatives to improve stability of tissue structures prior to perfusion with cryoprotectants and subsequent storage in liquid nitrogen would seem to offer significant advantages. The main issue that would require resolution prior to such use is the risk that fixation might obstruct circulation, thus impeding subsequent perfusion with cryoprotectants. Other than this risk, the use of chemical fixatives (such as aldehydes and in particular glutaraldehyde) would reliably improve structural preservation and would be effective at halting almost all deterioration within minutes of perfusion[67]. The utility of chemical preservation has been discussed by Drexler[1] and by Olson[90], among others. Ischemia The events following ischemia have been reasonably well characterized. Following experimental induction of ischemia in cats, Kalimo et. al.[74] found "The resulting cellular alterations were homogeneous and uniform throughout the entire brain: they included early chromatin clumping, gradally increasing electron lucency of the cell sap, distention of endoplasmic reticulum and Golgi cisternae, transient mitochondrial condensation followed by swelling and appearance of flocculent densities, and dispersion of ribosomal rosettes." Energy levels within the cell drop sharply within a few minutes of cessation of blood flow. The chromatin clumping is a reversible early change. The loss of energy results fairly quickly in failure to maintain trans-membrane concentration gradients (for example the Na+K+ pump stops working, resulting in increased intracellular Na+ and increased extracellular K+). The uneven equilibration of concentration gradients results in changes in osmotic pressure with consequent flows of water. Swelling of mitochondria and other structures occurs. The appearance of "flocculent densities" in the mitochondria is thought to indicate severe internal membrane damage which is "irreversible."[ft. 16] Ischemic changes do not appear to result in any damage that would prevent repair (e.g., changes that would result in significant loss of information about structure) for at least a few hours. Temporary and sometimes even permanent functional recovery has been demonstrated in optimal situations after as long as 60 minutes of total ischemia[93, 94, 95]. Hossmann, for example, reported results on 143 cats subjected to one hour of normothermic global brain ischemia[97]. "Body temperature was maintained at 36 to 37 degrees C with a heating pad. ... Completeness of ischemia was tested by injecting 133 Xe into the innominate artery immediately before vascular occlusion and monitoring the absence of decay of radioactivity from the head during ischemia, using external scintillation detectors. ... In 50% of the animals, even major spontaneous EEG activity returned after ischemia.... One cat survived for 1 yr after one hour of normothermic cerebrocirculatory arrest with no electrophysiologic deficit and with only minor neurologic and morphologic disturbances." Functional recovery is a more stringent criterion than the more relaxed information theoretic criterion, which merely requires adequate structural preservation to allow inference about the pre-existing structure. Reliable identification of the various cellular structures is possible hours (and sometimes even days) later. Detailed descriptions of ischemia and its time course[72, page 209 et sequitur] also clearly show that cooling substantially slows the rate of deterioration. Thus, even moderate cooling "postmortem" slows deterioration significantly. Lysosomes The theory that lysosomes ("suicide bags") rupture and release digestive enzymes into the cell that result in rapid deterioration of chemical structure appears to be incorrect. More broadly, there is a body of work suggesting that structural deterioration does not take place rapidly. Kalimo et. al.[74] said "It is noteworthy that after 120 min of complete blood deprivation we saw no evidence of membrane lysosomal breakdown, an observation which has also been reported in studies of in vitro lethal cell injury[omitted references], and in regional cerebral ischemia[omitted references]." Hawkins et. al.[75] said "...lysosomes did not rupture for approximately 4 hours and in fact did not release the fluorescent dye until after reaching the postmortem necrotic phase of injury. ... The original suicide bag mechanism of cell damage thus is apparently not operative in the systems studied. Lysosomes appear to be relatively stable organelles...." Messenger RNA and Protein Morrison and Griffin[76] said "We find that both rat and human cerebellar mRNAs are surprisingly stable under a variety of postmortem conditions and that biologically active, high-molecular-weight mRNAs can be isolated from postmortem tissue. ... A comparison of RNA recoveries from fresh rat cerebella and cerebella exposed to different postmortem treatments showed that 83% of the total cytoplasmic RNAs present immediately postmortem was recovered when rat cerebella were left at room temperature for 16 h [hours] postmortem and that 90% was recovered when the cerebella were left at 4 degrees C for this length of time .... In neither case was RNA recovery decreased by storing the cerebella in liquid nitrogen prior to analysis. ... Control studies on protein stability in postmortem rat cerebella show that the spectrum of abundant proteins is also unchanged after up to 16 h [hours] at room temperature...." 17 Million Year Survival of DNA The ability of DNA to survive for long periods was dramatically illustrated by its recovery and sequencing from a 17 to 20 million year old magnolia leaf[81]. "Sediments and fossils seem to have accumulated in an anoxic lake bottom environment; they have remained unoxidized and water-saturated to the present day." "Most leaves are preserved as compression fossils, commonly retaining intact cellular tissue with considerable ultrastructural preservation, including cell walls, leaf phytoliths, and intracellular organelles, as well as many organic constituents such as flavonoids and steroids[omitted references]. There is little evidence of post-depositional (diagenetic) change in many of the leaf fossils." Cell Cultures taken after "Death" Gilden et. al.[77] report that "...nearly two-thirds of all tissue acquired in less than six hours after death was succesfully grown, whereas only one-third of all tissue acquired more than six hours after death was successfully grown in tissue culture." While it would be incorrect to conclude that widespread cellular survival occurred based on these findings, they do show that structural deterioration is insufficient to disrupt function in at least some cells. This supports the idea that structural deterioration in many other cells should not be extensive. Information Loss and Ischemia It is currently possible to initiate cryonic suspension immediately after legal death. In favorable circumstances legal death can be declared upon cessation of heartbeat in an otherwise revivable terminally ill patient who wishes to die a natural death and has refused artificial means of prolonging the dieing process. In such cases, the ischemic interval can be short (two or three minutes). It is implausible that ischemic injury would cause information theoretic death in such a case. As the ischemic interval lengthens the level of damage increases. It is not clear exactly when information loss begins or when information theoretic death occurs. Present evidence supports but does not prove the hypothesis that information theoretic death does not occur for at least a few hours following the onset of ischemia. Quite possibly many hours of ischemia can be tolerated. Freezing of tissue within that time frame followed by long term storage in liquid nitrogen should provide adequate preservation of structure to allow repair[ft. 17]. MEMORY It is essential to ask whether the important structural elements underlying "behavioral plasticity" (human memory and human personality) are likely to be preserved by cryonic suspension. Clearly, if human memory is stored in a physical form which is obliterated by freezing, then cryonic suspension won't work. In this section we briefly consider a few major aspects of what is known about long term memory and whether known or probable mechanisms are likely to be preserved by freezing. It appears likely that short term memory, which can be disrupted by trauma or a number of other processes, will not be preserved by cryonic suspension. Consolidation of short term memory into long term memory is a process that takes several hours. We will focus attention exclusively on long term memory, for this is far more stable. While the retention of short term memory cannot be excluded (particularly if chemical preservation is used to provide rapid initial fixation), its greater fragility renders this significantly less likely. To see the Mona Lisa or Niagara Falls changes us, as does seeing a favorite television show or reading a good book. These changes are both figurative and literal, and it is the literal (or neuroscientific) changes that we are interested in: what are the physical alterations that underlie memory? Briefly, the available evidence supports the idea that memory and personality are stored in identifiable physical changes in the nerve cells, and that alterations in the synapses between nerve cells play a critical role. Shepherd in "Neurobiology"[38, page 547] said: "The concept that brain functions are mediated by cell assemblies and neuronal circuits has become widely accepted, as will be obvious to the reader of this book, and most neurobiologists believe that plastic changes at synapses are the underlying mechanisms of learning and memory." Kupfermann in "Principles of Neural Science"[13, page 812] said: "Because of the enduring nature of memory, it seems reasonable to postulate that in some way the changes must be reflected in long-term alterations of the connections between neurons." Squire in "Memory and Brain"[109, page 10] said: "The most prevalent view has been that the specificity of stored information is determined by the location of synaptic changes in the nervous system and by the pattern of altered neuronal interactions that these changes produce. This idea is largely accepted at the present time, and will be explored further in this and succeeding chapters in the light of current evidence." Lynch, in "Synapses, Circuits, and the Beginnings of Memory"[34, page 3] said: "The question of which components of the neuron are responsible for storage is vital to attempts to develop generalized hypotheses about how the brain encodes and makes use of memory. Since individual neurons receive and generate thousands of connections and hence participate in what must be a vast array of potential circuits, most theorists have postulated a central role for synaptic modifications in memory storage." Turner and Greenough said "Two non-mutually exclusive possible mechanisms of brain information storage have remained the leading theories since their introduction by Ramon y Cajal [omitted reference] and Tanzi [omitted reference]. The first hypothesis is that new synapse formation, or selected synapse retention, yields altered brain circuitry which encodes new information. The second is that altered synaptic efficacy brings about similar change."[22]. Greenough and Bailey in "The anatomy of a memory: convergence of results across a diversity of tests"[39] say: "More recently it has become clear that the arrangement of synaptic connections in the mature nervous system can undergo striking changes even during normal functioning. As the diversity of species and plastic processes subjected to morphological scrutiny has increased, convergence upon a set of structurally detectable phenomena has begun to emerge. Although several aspects of synaptic structure appear to change with experience, the most consistent potential substrate for memory storage during behavioral modification is an alteration in the number and/or pattern of synaptic connections." It seems likely, therefore, that human memory is encoded by detectable physical changes in cell structure and in particular in synaptic structure. Plastic Changes in Model Systems What, exactly, might these changes be? Very strong statements are possible in simple "model systems". Bailey and Chen, for example, identified several specific changes in synaptic structure that encoded learned memories from sea slugs (Aplysia californica) by direct examination of the changed synapse with an electron microscope[36]. "Using horseradish peroxidase (HRP) to label the presynaptic terminals (varicosities) of sensory neurons and serial reconstruction to analyze synaptic contacts, we compared the fine structure of identified sensory neuron synapses in control and behaviorally modified animals. Our results indicate that learning can modulate long-term synaptic effectiveness by altering the number, size, and vesical complement of synaptic active zones." Examination by transmission electron microscopy in vacuum of sections 100 nanometers (several hundred atomic diameters) thick recovers little or no chemical information. Lateral resolution is at best a few nanometers (tens of atomic diamters), and depth information (within the 100 nanometer section) is entirely lost. Specimen preparation included removal and desheathing of the abdominal ganglion which was then bathed in seawater for 30 minutes before impalement and intrasomatic pressure injection of HRP. Two hours later the ganglia were fixed, histochemically processed, and embedded. Following this treatment, Bailey and Chen concluded that "...clear structural changes accompany behavioral modification, and those changes can be detected at the level of identified synapses that are critically involved in learning." The following observations about this work seem in order. First, several different types of changes were present. This provides redundant evidence of synaptic alteration. Inability to detect one type of change, or obliteration of one specific type of change, would not be sufficient to prevent recovery of the "state" of the synapse. Second, examination by electron microscopy is much cruder than the techniques considered here which literally propose to analyze every molecule in the structure. Further alterations in synaptic chemistry will be detectable when the synapse is examined in more detail at the molecular level. Third, there is no reason to believe that freezing would obliterate the structure beyond recognition. Implications for Human Memory Such satisfying evidence is at present confined to "model systems;" what can we conclude about more complex systems, e.g., humans? Certainly, it seems safe to say that synaptic alterations are also used in the human memory system, that synaptic changes of various types take place when the synapse "remembers" something, that the changes involve alterations in at least many thousands of molecules and probably involve mechanisms similar to those used in lower organisms (evolution is notoriously conservative). It seems likely that knowledge of the morphology and connectivity of nerve cells along with some specific knowledge of the biochemical state of the cells and synapses would be sufficient to determine memory and personality. Perhaps, however, some fundamentally different mechanism is present in humans? Even if this were to prove true, any such system would be sharply constrained by the available evidence. It would have to persist over the lifetime of a human being, and thus would have to be quite stable. It would have to tolerate the natural conditions encountered by humans and the experimental conditions to which primates have been subjected without loss of memory and personality (presuming that the primate brain is similar to the human brain). And finally, it would almost certainly involve changes in tens of thousands of molecules to store each bit of information. Functional studies of human long term memory suggest it has a capacity of only 10^9 bits (somewhat over 100 megabytes)[37] (though this did not consider motor memory, e.g., the information storage required when learning to ride a bicycle). Such a low memory capacity suggests that, independent of the specific mechanism, a great many molecules are required to remember each bit. It even suggests that many synapses are used to store each bit (recall there are perhaps 10^15 synapses - which implies some 10^6 synapses per bit of information stored in long term memory). Given that future technology will allow the molecule-by-molecule analysis of the structures that store memory, and given that such structures are large on the molecular scale (involving tens of thousands of molecules each) then it appears unlikely that such structures will survive the lifetime of the individual only to be obliterated beyond recognition by freezing. Freezing is unlikely to cause information theoretic death. Rate This Message: http://www.cryonet.org/cgi-bin/rate.cgi?msg=0019.2