X-Message-Number: 25039 Date: Sun, 14 Nov 2004 12:31:15 -0800 (PST) From: Doug Skrecky <> Subject: Molecular Markers Of Aging Identified CHAPEL HILL -- Researchers at the University of North Carolina at Chapel Hill Lineberger Comprehensive Cancer Center may have made a crucial discovery in the understanding of cellular aging. In a study published in the Nov. 1 issue of the Journal of Clinical Investigation, the researchers report that as cells and tissues age, the expression of two proteins called p16INK4a and ARF dramatically increases. This increase in expression, more than a hundredfold in some tissues, suggests a strong link between cellular aging and the upregulation, or increased production, of p16INK4a and ARF. "At the very least, our work suggests that looking at the expression of one or both proteins will make a great biomarker of aging - a tool to clinically determine the actual molecular age of people, as opposed to just their chronological age," said Lineberger member Dr. Norman Sharpless, the senior author of the study and assistant professor of medicine and genetics at UNC's School of Medicine. "We all know people that we consider to be a young 65, and we believe they won't demonstrate as much p16INK4a or ARF expression as others of the same age." In addition to identifying molecular targets that may slow aging in the future, the study may also suggest immediate clinical applications. Knowing the molecular age of a tissue may also enable physicians to select the "youngest" most viable tissues and organs for transplantation, to predict how well a patient will heal after surgery and, by being able to characterize the regenerative ability of a patient's bone marrow, predict future toxicity of chemotherapy in a cancer patient. Both p16INK4a and ARF are known potent tumor suppressors, or proteins that halt tumor cell growth. The study suggests that the important anti-cancer function of these proteins to limit cellular growth might in turn cause aging. "Proliferation of cells is important in the repair and regrowth of tissues. In fact, we grow old in part because our bodies' ability to regenerate tissues decreases as we age," Sharpless said. "We believe an untoward effect of increased p16INK4a and ARF expression outside of cancer is a decrease in cellular proliferation needed to sustain this regeneration." The researchers also found that the increase in p16INK4a and ARF can be substantially inhibited by decreasing caloric intake, a known retardant of aging. This result suggests that decreased expression of p16INK4a and ARF could mediate the known anti-aging effects of caloric restriction. "Our results suggest that going on a short-term diet will not reverse the aging process; only long-term restrictions appeared to have an effect on p16INK4a and ARF expression. Therefore, our results would not be consistent with the idea that short-term caloric restriction prior to surgery would improve post-operative wound healing," Sharpless said. The work has strong implications for stem cell renewal, he added. Stem cells are self-replenishing cells that constantly divide and differentiate into the component cells that make up the tissues in the human body and are found in particularly high number in the bone marrow, as well as organs such as the skin, kidney and liver. "As tissue stem cells age, they appear to express more p16INK4a and ARF, which would stop those cells from replenishing," Sharpless said. "As people age, they could just run out of functioning stem cells." Depletion of stem cells could affect the ability of the body to heal after injury or surgery and may also predict the ability of certain diseases, such as cardiomyopathy, to progress," he added. J Clin Invest. 2004 Nov;114(9):1299-307 Ink4a/Arf expression is a biomarker of aging. Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K, Su L, Sharpless NE. The Ink4a/Arf locus encodes 2 tumor suppressor molecules, p16(INK4a) and Arf, which are principal mediators of cellular senescence. To study the links between senescence and aging in vivo, we examined Ink4a/Arf expression in rodent models of aging. We show that expression of p16(INK4a) and Arf markedly increases in almost all rodent tissues with advancing age, while there is little or no change in the expression of other related cell cycle inhibitors. The increase in expression is restricted to well-defined compartments within each organ studied and occurs in both epithelial and stromal cells of diverse lineages. The age-associated increase in expression of p16(INK4a) and Arf is attenuated in the kidney, ovary, and heart by caloric restriction, and this decrease correlates with diminished expression of an in vivo marker of senescence, as well as decreased pathology of those organs. Last, the age-related increase in Ink4a/Arf expression can be independently attributed to the expression of Ets-1, a known p16(INK4a) transcriptional activator, as well as unknown Ink4a/Arf coregulatory molecules. These data suggest that expression of the Ink4a/Arf tumor suppressor locus is a robust biomarker, and possible effector, of mammalian aging. Bull Cancer. 2004 May;91(5):399-402 [pRB, p53, p16INK4a, senescence and malignant transformation] Recent works aimed at clarifying the respective roles of p16INKa and p14ARF (both located on the same INK4a locus on chromosome 9p21 in man) in malignant transformation come to the conclusion that p16INK4a is the true tumor suppressor gene in man. In mouse, it is the p19ARF knockout that suppresses the barrier protecting cells from malignant transformation. This situation is in agreement with p19ARF- and p16-mediated senescence induced by oncogenic mutated ras (Ras*) in mouse and man respectively. Other results have shown that senescence in human diploid fibroblasts is associated with heterochromatin occurrence that maintains in repressed state E2F1-induced gens required for G1 to S phases transition. Since RB protein is responsible for this chromatin modification, cells with any impaired RB pathway cannot enter into senescence. Kidney Int. 2004 Feb;65(2):510-20 Expression of p16INK4a and other cell cycle regulator and senescence associated genes in aging human kidney. BACKGROUND: Somatic cells in vitro have a finite life expectancy before entering a state of senescence. If this state has an in vivo counterpart, it could contribute to organ aging. We have previously shown that human kidney cortex displays telomere shortening with age. In the present study, we evaluated the relationship between renal age in humans and a number of phenomena associated with cellular senescence in vitro. METHODS: Human kidney specimens were obtained at 8 weeks to 88 years of age and were assessed for changes related to aging. RESULTS: We found that human kidneys expressed relatively constant levels of mRNAs for genes potentially related to senescence. Among the candidate genes surveyed, the cell cycle regulator p16INK4a emerged with the strongest association with renal aging for both mRNA and protein expression. Proliferation as measured by Ki-67 expression was inversely correlated with p16INK4a expression, compatible with a role for p16INK4a as an irreversible cell cycle inhibitor. Cyclooxygenase 1 and 2 (COX-1 and COX-2) mRNA expression was elevated in older kidneys, associated with increased protein expression. Comparison of gene expression with age-related histologic changes revealed that glomerulosclerosis correlated with p16INK4a and p53, whereas interstitial fibrosis and tubular atrophy were associated with p16INK4a, p53, COX-1, transforming growth factor-beta 1 (TGF-beta 1), and heat shock protein A5 (HSPA5). CONCLUSION: We conclude that some changes observed in cellular senescence in vitro do occur in human kidney with age, particularly in the renal cortex, in some cases correlating with histologic features. P16INK4a emerged with the most consistent correlations with age and histologic changes and inversely correlated with cell replication. Circ Res. 2003 Oct 3;93(7):604-13. Epub 2003 Sep 04. Senescence and death of primitive cells and myocytes lead to premature cardiac aging and heart failure. Chronological myocardial aging is viewed as the inevitable effect of time on the functional reserve of the heart. Cardiac failure in elderly patients is commonly interpreted as an idiopathic or secondary myopathy superimposed on the old heart independently from the aging process. Thus, aged diseased hearts were studied to determine whether cell regeneration was disproportionate to the accumulation of old dying cells, leading to cardiac decompensation. Endomyocardial biopsies from 19 old patients with a dilated myopathy were compared with specimens from 7 individuals of similar age and normal ventricular function. Ten patients with idiopathic dilated cardiomyopathy were also analyzed to detect differences with aged diseased hearts. Senescent cells were identified by the expression of the cell cycle inhibitor p16INK4a and cell death by hairpin 1 and 2. Replication of primitive cells and myocytes was assessed by MCM5 labeling, myocyte mitotic index, and telomerase function. Aged diseased hearts had moderate hypertrophy and dilation, accumulation of p16INK4a positive primitive cells and myocytes, and no structural damage. Cell death markedly increased and occurred only in cells expressing p16INK4a that had significant telomeric shortening. Cell multiplication, mitotic index and telomerase increased but did not compensate for cell death or prevented telomeric shortening. Idiopathic dilated cardiomyopathy had severe hypertrophy and dilation, tissue injury, and minimal level of p16INK4a labeling. In conclusion, telomere erosion, cellular senescence, and death characterize aged diseased hearts and the development of cardiac failure in humans. Oncogene. 2000 Mar 23;19(13):1613-22 p16 INK4a can initiate an autonomous senescence program. The tumor suppressor p16INK4a is a potent mediator of cell cycle arrest in transient expression studies, is induced in senescing cells, and can impose morphological features of senescence. Nonetheless, it is unclear whether p16INK4a can block cell proliferation irreversibly. We explored this issue using osteogenic sarcoma cell clones with inducible p16INK4a expression. Induction of p16INK4a for 1 day arrested most cells in G1 phase. If the induction was then interrupted, p16INK4a levels returned to baseline and robust growth resumed within 3-5 days. When p16INK4a was induced for 6 days DNA synthesis remained strongly inhibited and the cells acquired morphological features of senescence. Moreover, if p16INK4a induction was interrupted at this point and the cells were followed for 12 more days, most cells retained these morphologic features and either failed to divide or died. This occurred despite the prompt return of p16INK4a expression and retinoblastoma protein phosphorylation toward baseline levels. In fact, some senescing cells appeared to enter S phase. These results demonstrate that a sustained period of p16INK4a expression is sufficient in this setting to impose a durable block to cell proliferation and that this state becomes independent of p16INK4a expression, hypophosphorylation of pRB, or a strict G1 arrest. Rate This Message: http://www.cryonet.org/cgi-bin/rate.cgi?msg=25039