X-Message-Number: 27243
Date: 19 Oct 2005 13:54:58 -0700
From: 
Subject: [News] NanoAging.com News

Restoring Silenced Suppressor Gene Kills Lung-cancer Cells



COLUMBUS , Ohio   A new study suggests that restoring a gene often silenced in 
lung cancer causes the cells to self-destruct. The findings could lead to a new 
strategy for treating the disease.


The research focused on a gene known as WWOX, which is lost or silenced in a 
large majority of lung cancers, and in cancers of the breast, ovary, prostate, 
bladder, esophagus and pancreas. The work was led by scientists at The Ohio 
State University Comprehensive Cancer Center   Arthur G. James Cancer Hospital 
and Richard J. Solove Research Institute.<br />
<br />

The study showed that both in the laboratory and in animal experiments, 
restoring the missing or silenced WWOX gene can slow or stop the cells'' 
growth.<br />
<br />

The study also showed that the reactivated gene is highly effective in stopping 
the growth of human lung tumors that have been transplanted into mice.<br />
<br />

The findings are published online in the Oct. 13 Early Edition of the 
Proceedings of the National Academy of Sciences.<br />
<br />

The American Cancer Society expects more than 172,500 Americans to develop lung 
cancer in 2005, and more than 163,500 people to die of the disease, making it 
the most common cause of cancer death in the U.S.<br />
<br />

 Our findings show that restoring the WWOX gene in lung-cancer cells that don''t
 express it will kill that lung-cancer cell,  says coauthor Kay Huebner, 
 professor of molecular virology, immunology and medical genetics and a 
 researcher with the OSU Comprehensive Cancer Center .<br />
<br />

 This suggests that if this gene could be delivered to, or reactivated in, the 
 tumor cells of lung-cancer cases that are deficient in this gene, it should 
 have a therapeutic effect. <br />
<br />

WWOX is a tumor suppressor gene. Tumor suppressor genes safeguard the body by 
triggering the death of cells that have sustained serious DNA damage before the 
cells become cancerous. The loss or silencing of tumor suppressor genes is a 
fundamental cause of tumor development.<br />
<br />

The WWOX protein is missing in cells making up many lung tumors, and in 62 
percent of cases, the gene is turned off by a chemical process known as 
methylation.<br />
<br />

 There is nothing wrong with those genes except that they are silenced by 
 methylation,  Huebner says.  Experimental drugs are now being tested that cause
 demethylation and may reactivate WWOX and other genes. <br />
<br />

For this study, Huebner and her colleagues used three different lines of 
laboratory-grown lung-cancer cells that were missing WWOX protein. The 
researchers then used a virus engineered to carry working copies of the WWOX 
gene into the three cell lines.<br />
<br />

After five days, the researchers found that cells having an active WWOX gene 
died off. The cells self-destructed through a natural process known as 
programmed cell death, or apoptosis. The lung-cancer cells that lacked the WWOX 
gene, on the other hand, continued growing and increased in number nearly five- 
or six-fold.<br />
<br />

Next, the researchers took some of the lung-cancer cells to which they''d added 
working copies of the WWOX gene, and they transplanted the cells into mice; a 
second group of control mice received lung-cancer cells without the WWOX 
gene.<br />
<br />

After 28 days, the mice that received tumor cells with no WWOX gene had 
developed tumors. Of the mice that received tumor cells with the gene, 60 
percent in one group and 80 percent in another group showed no tumors.<br />
<br />

 Our study is a proof of principle,  Huebner says.  It shows that if the WWOX 
 gene can be delivered into tumor cells, it can kill them.<br />
<br />

 We also showed that if a silenced WWOX gene is present and can be turned back 
 on, that too will kill tumor cells,  adds first author and postdoctoral 
 researcher Muller Fabbri.<br />
<br />

 We don''t believe that using WWOX as a therapy will necessarily eradicate 
 tumors, Fabbri says,  but we do believe that this kind of gene therapy might be
 useful when used in combination with chemotherapy and other therapies. <br />
<br />

Funding from the National Cancer Institute, the Commonwealth of Pennsylvania 
Tobacco Settlement Fund and the U.S. Department of Defense Breast Cancer Program
supported this research.

Anonymous
_______________________________________________
News mailing list

http://lists.nanoaging.com/mailman/listinfo/news

Rate This Message: http://www.cryonet.org/cgi-bin/rate.cgi?msg=27243

Warning: This message was filtered from the daily CryoNet digest
because the poster's reputation was too low.
It thus may need to be rated.