X-Message-Number: 29650 Date: Mon, 16 Jul 2007 15:13:17 -0700 (PDT) From: un person <> Subject: newsweek on low temps to save heart attack vics And they even talk about what happens to your "self" when and if you are clinically dead and then revived. Heh heh....I know some of you have a hard-on for that sort of stuff, so this Newsweek article should be your meat, cuz it discusses use of hypothermia to save cardiac arrest patients, and also cryonics is mentioned. ENJOY! Oh, and BTW, Kevin, what's the deal with the 20K limit? THat is surely not THAT big in this day of cheap terabyte drives? So, I had to truncate the message. Go to the URL for the whole thing. Still, this is an important article for us in newsweek, and it should be saved somewhere. http://www.msnbc.msn.com/id/19751440/site/newsweek/page/0/ Back From the Dead Doctors are reinventing how they treat sudden cardiac arrest, which is fatal 95 percent of the time. A report from the border between life and death. By Jerry Adler Newsweek July 23, 2007 issue - Bill Bondar knows exactly where he died: on the sidewalk outside his house in a retirement community in southern New Jersey. It was 10:30 on the night of May 23, a Wednesday, and Bondar was 61 a retired computer programmer with a cherry red Gibson bass guitar, an instrument he had first picked up around the same time as Chuck Berry. He was 6 feet 1 and 208 pounds, down about 50 pounds over the last several years. On that night he had driven home from a jam session with two friends and, as he was unloading his car, his heart stopped. That is the definition of "clinical death," one of several definitions doctors use, not always with precision. He wasn't yet "brain dead," implying a permanent cessation of cerebral function, or "legally dead," i.e., fit to be buried. But he was dead enough to terrify his wife, Monica, who found him moments later, unconscious, not breathing, with no pulse. His eyes were open, but glassy "like marbles," Monica says, "with no life in them. They were the eyes of a dead man." Story continues below ↓ advertisement In a general sense, we know what happened to Bondar. His doctor at the University of Pennsylvania Hospital, Dr. Edward Gerstenfeld, later determined that Bondar's left anterior descending artery was 99 percent blocked by a coating of plaque, leaving a passage "the width of a hair." A blockage in that vessel, the largest artery feeding the heart, is known to cardiologists as the widowmaker. A tiny clot lodging there would have sent his heart into a brief burst of the ineffectual rhythm known as fibrillation, before it stopped altogether. Within 20 seconds the hundred billion neurons in Bondar's brain would have used up their residual oxygen, shutting down the ceaseless exchange of electrical charges that we experience as consciousness. His breathing stopped as he entered a quiescence beyond sleep. About 250,000 times a year in the United States, someone's heart stops beating on the street, or at home or at work. This can be the result of a heart attack, when a clot chokes off a coronary artery, or a host of other conditions including congenital defects, abnormal blood chemistry, emotional stress and physical exertion. Without CPR, their window for survival starts to close in about five minutes. Life or death is mostly a matter of luck; response time to a 911 call varies greatly by location, but can exceed 10 minutes in many parts of the country. In rough numbers, they have a 95 percent chance of dying. Alex Majoli / Magnum for Newsweek Bill Bondar, Died May 23, 2007: One of the 250,000 Americans whose hearts will stop outside a medical setting this year, Bondar, 61, is seen here, at the site of his death near his New Jersey home. After being discovered by his wife, unconscious and without a heartbeat, he was among a small group of patients treated with a new protocol at the University of Pennsylvania How long has it been since you've read an article about heart attacks that didn't mention saturated fats? Our age is obsessed with "health," but when health fails, the last line of defense is in the emergency room, where doctors patrol the border between life and death a boundary that they have come to see as increasingly uncertain, even porous. This is a story about what happens when your heart stops: about new research into how brain cells die and how something as simple as lowering body temperature may keep them alive research that could ultimately save as many as 100,000 lives a year. And it's about the mind as well, the visions people report from their deathbeds and the age-old questions about what, if anything, outlives the body. It begins with a challenge to something doctors have always been taught in medical school: that after about five minutes without a pulse, the brain starts dying, followed by heart muscle the two most voracious consumers of oxygen in the body, victims of their own appetites. The emerging view is that oxygen deprivation is merely the start of a cascade of reactions within and outside the cells that can play out over the succeeding hours, or even days. Dying turns out to be almost as complicated a process as living, and somehow, among its labyrinthine pathways, Bondar found a way out. Monica tried to recall what she had learned in a CPR class decades earlier. She bent over Bondar and began pushing down on his chest, then rushed back to the kitchen to dial 911. "My husband is dying!" she gasped to the operator. Compressing Bondar's chest would have sent a trickle of blood to his brain, supplying a fraction of its normal oxygen consumption, not enough to bring him back to consciousness. But the West Deptford police station was only three blocks away, and within two minutes of Monica's call three officers arrived with a defibrillator. They placed the pads on Bondar's chest, delivered two jolts of electricity to his heart, and got a pulse back. Soon paramedics arrived with oxygen and rushed him to a nearby community hospital. The report Monica received there after an hour was equivocal: Bondar was "stable" his heart rate and blood pressure back to near normal but he was still in a coma. It was then that Monica made a decision that may have saved his life. She asked that her husband be moved the 15 miles to Penn, the region's leading university hospital. Dr. Lance Becker, director of Penn's year-old Center for Resuscitation Science, frequently dreams about mitochondria: tubular structures within cells, encasing convoluted membranes where oxygen and glucose combine to produce the energy the body uses in moving everything from molecules across cell membranes to barbells. Recently mitochondria have been in the news because they have their own DNA, which is inherited exclusively down the female line of descent, making them a useful tool for geneticists and anthropologists. But Becker is interested in mitochondria for another reason: he believes they are the key to his audacious goal of tripling the time during which a human being can go without a heartbeat and still be revived. That the five-minute rule is not absolute has been known for a long time, and the exceptions seem to involve low temperatures. Children who fall through ice may survive unexpectedly long immersions in cold water. On Napoleon's Russian campaign, his surgeon general noticed that wounded infantrymen, left on the snowy ground to recover, had better survival rates than officers who stayed warm near the campfire. Becker is hoping to harness this effect to save lives today. Becker is 53, slender and boyish in a way that belies his thinning hair; his typical greeting to colleagues is a jaunty "What's up, guys?" For his lab he has assembled a high-powered team from a wide range of specialties, including a brilliant young neuroscientist, Dr. Robert Neumar; an emergency-medicine specialist, Dr. Ben Abella; plus cardiologists, biochemists, bioengineers and a mouse-heart surgeon. His associate director, Dr. Vinay Nadkarni, comes from pediatrics. Becker has in effect re-created at Penn, on a more ambitious scale, the laboratory he founded in 1995 at the University of Chicago, with a grant of $50,000 from the philanthropist Jay Pritzker. Ten years earlier Pritzker had walked into the emergency room at Chicago's Michael Reese Hospital complaining of chest pains, and crumpled to the floor. Becker resuscitated him, the beginning of both a rewarding friendship (Pritzker lived for 14 more years) and a new direction for Becker's career. "Every day since then," he says, "I would go home and wonder why Jay Pritzker got a second chance and so many other people didn't." Becker's interest in mitochondria reflects a new understanding about how cells die from loss of circulation, or ischemia. Five minutes without oxygen is indeed fatal to brain cells, but the actual dying may take hours, or even days. Doctors have known for a long time that the consequences of ischemia play out over time. "Half the time in cardiac arrest, we get the heart going again, blood pressure is good, everything is going along," says Dr. Terry Vanden Hoek, director of the Emergency Resuscitation Center at the University of Chicago, "and within a few hours everything crashes and the patient is dead." It took some time, though, for basic research to supply an explanation. Neumar, working with rats, simulates cardiac arrest and resuscitation, and then examines the neurons at intervals afterward. Up to 24 hours later they appear normal, but then in the next 24 hours, something kicks in and they begin to deteriorate. And Dr. James R. Brorson of the University of Chicago has seen something similar in neural cells grown in culture; deprive them of oxygen and watch for five minutes, or even much longer, and not much happens. "If your car runs out of gas, your engine isn't destroyed, it just needs fuel," he says. Cell death isn't an event; it's a process. And in principle, a process can be interrupted. The process appears to begin in the mitochondria, which control the cell's self-destruct mechanism, known as apoptosis, and a related process, necrosis. Apoptosis is a natural function, destroying cells that are no longer needed or have been damaged in some way. Cancer cells, which might otherwise be killed by apoptosis, survive by shutting down their mitochondria; cancer researchers are looking for ways to turn them back on. Becker is trying to do the opposite, preventing cells that have been injured by lack of oxygen from, in effect, committing suicide. It's a daunting problem. "We're asking the questions," says one leading researcher, Dr. Norm Abramson of the University of Pittsburgh. "We just haven't found the answers." Until recently, the conventional wisdom was that apoptosis couldn't be stopped once it was underway. It proceeds by a complex sequence of reactions including inflammation, oxidation and cell-membrane breakdown none of which seems to respond to traditional therapies. Becker views cell death in cardiac arrest as a two-step process, beginning with oxygen deprivation, which sets up the cell for apoptosis; then the heart starts up again and the patient gets a lungful of oxygen, triggering what is called reperfusion injury. The very substance required to save the patient's life ends up injuring or killing him. Researchers have ransacked their arsenal of drugs looking for ways to interrupt this sequence. Over the years they have tried various techniques on nearly 100,000 patients around the world. None has shown any benefits, according to Dr. A. Michael Lincoff, director of cardiovascular research at the Cleveland Clinic. But one thing does seem to work, something so obvious and low-tech that doctors have a hard time accepting it. It's hypothermia, the intentional lowering of body temperature, down to about 92 degrees Fahrenheit, or 33 Celsius. Research by a European team in 2002 reported favorable results from a controlled study of several hundred cardiac-arrest patients; subjects who were cooled both had better survival rates and less brain damage than a control group. The first big international conference on cooling took place in Colorado this February. Despite favorable studies and the endorsement of the American Heart Association, "we were concerned that [hypothermia] still wasn't catching on," says the conference organizer, Dr. Daniel Herr of Washington Hospital Center in Washington, D.C. The two leading manufacturers of cooling equipment Medivance, Inc., and Gaymar Industries say only about 225 hospitals, out of more than 5,700 in the United States, have installed machines for inducing hypothermia. Herr says the treatment requires a "paradigm shift" by doctors. "People have a hard time believing that something as simple as cooling can make such a big difference." Perhaps that's because no one quite understands how cooling works. It appears to work globally on apoptosis, rather than on any of the individual biochemical pathways involved in it. "The short answer is, we don't know," says Neumar. ____________________________________________________________________________________ Shape Yahoo! in your own image. Join our Network Research Panel today! http://surveylink.yahoo.com/gmrs/yahoo_panel_invite.asp?a=7 Rate This Message: http://www.cryonet.org/cgi-bin/rate.cgi?msg=29650